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Background: Substrate water must reach the buried Mn4O5Ca cluster in Photosystem II.
Results:OH� produced by radiolysis modified buried amino acid residues. These were mapped onto the PS II crystal structure.
Conclusion: Two groups of oxidized residues were identified which form putative pathways to the Mn4O5Ca cluster.
Significance: Identification of water and oxygen channels is crucial for our understanding of Photosystem II function.

Photosystem II useswater as an enzymatic substrate. It has been
hypothesized that this water is vectored to the active site for water
oxidation via water channels that lead from the surface of the pro-
teincomplex to theMn4O5Cametal cluster.Theradiolysisofwater
by synchrotron radiation produces amino acid residue-modifying
OH� and is apowerful technique to identify regionsof proteins that
are in contactwithwater. In this study,wehaveused this technique
to oxidatively modify buried amino acid residues in higher plant
Photosystem IImembranes. Fourier transform ion cyclotron reso-
nancemass spectrometry was then used to identify these oxidized
amino acid residues that were located in several core Photosystem
II subunits (D1, D2, CP43, and CP47). While, as expected, the
majority of the identified oxidized residues (≈75%) are located on
the solvent-exposed surface of the complex, a number of buried
residueson theseproteinswerealsomodified.These residues form
groupswhich appear to lead from the surface of the complex to the
Mn4O5Ca cluster. These residues may be in contact with putative
water channels in the photosystem. These results are discussed
within the context of a number of largely computational studies
that have identified putative water channels in Photosystem II.

Photosystem II (PS II)2 uses the energy harvested from light
energy to oxidize water and reduce plastoquinone. Six intrinsic
membrane proteins appear to be required for O2 evolution.

These are CP47, CP43, D1, D2, and the � and � subunits of
cytochrome b559. Deletion of any one of these subunits uni-
formly results in the loss of PS II function and assembly (1, 2). In
higher plants, three extrinsic proteins, PsbO, PsbP, and PsbQ
also are required formaximal rates of O2 evolution under phys-
iological inorganic cofactor concentrations (3). The PsbO pro-
tein appears to play a central role in the stabilization of the
manganese cluster (4), is essential for efficient and stable O2

evolution and is required, along with PsbP, for photoau-
totrophic growth and PS II assembly in higher plants propa-
gated under normal growth conditions (5–8). Under low light
growth conditions the PsbQ component also is required for
photoautotrophy (8, 9). Over the past decade, increasingly
higher resolution crystal structures of cyanobacterial PS II have
significantly enhanced our understanding of the molecular
organization of the constituent polypeptides of the photosys-
tem and the active site for oxygen evolution, theMn4O5Ca cluster
(10–14). A high resolution, 1.9 Å crystal structure of cyanobacte-
rial PS II has recently become available (15). Unfortunately, no
crystal structures forhigherplantPS IIhavebeenpresented.While
there are differences between the higher plant and the cyanobac-
terial photosystems, particularly with respect to the identity and
organization of the extrinsic proteins (3), the amino acid
sequences of the intrinsic components (D1, D2, CP43, and CP47)
are very similar (�85% similarity (16)). Consequently, one would
expect that the structural and functionalorganizationof thesepro-
teins within PS II would be highly homologous between higher
plants and cyanobacteria.
The use of the synchrotron radiolysis of water to produce

OH� capable of oxidatively modifying amino acid residues in
contact with water is an emerging and useful technique in
structural biology (17, 18). Recently, this method has been used
to identify buried water molecules which function in a channel
mediating the activation of amembrane protein, theG-protein-
coupled receptor, rhodopsin (19). It has also been used to iden-
tify the surface residues of proteins that are exposed to the bulk
aqueous solvent (20, 21).
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Because the active site for water oxidation, the Mn4CaO5
cluster, is buried within the structure of the photosystem, sub-
strate water must transit from the bulk solvent to the active site
through water channels. Several largely computational studies
have sought to identify these pathways.Murray and Barber (22)
used the CAVER Program (23) to examine the 3.5 Å crystal
structure of Thermosynechococcus elongatus (12). Gabdulkha-
kov et al. (24) used nobel gas and dimethyl sulfoxide co-crystal-
lization studies in combinationwith CAVER to examine the 2.9
Å structure of T. elongatus (14), and Ho and Styring calculated
solvent-accessible surfaces for the 3.0 Å T. elongatus structure
of Loll et al. (13).Molecular dynamic simulations have also been
used to probe for water channels within the photosystem (25,
26), the latter study being performed on the recent high resolu-
tion PS II structure (15).
We hypothesized that buried amino acid residues in contact

with such putative water channels in the interior of PS II would
be significantly more susceptible to oxidative amino acid mod-
ification during the synchrotron radiolysis of water than buried
residues not exposed to water. Consequently, the identification
of such oxidatively modified residues in the interior of PS II
should serve to complement and extend the largely computa-
tional studies mentioned above.

EXPERIMENTAL PROCEDURES

PS II membranes were isolated from market spinach by the
method of Berthold et al. as modified by Ghanotakis and Bab-
cock (27, 28). After isolation, the PS II membranes were sus-
pended at 2 mg chlorophyll/ml in 50 mM Mes-NaOH, pH 6.0,
300mM sucrose, 15mMNaCl buffer, and frozen at�80 °C until
use. In these experiments, we have used the XLRM2 beamline
at The J. Bennett Johnston, Sr. Center for Advanced Micro-
structures&Devices (CAMD) synchrotron. This beamline pro-
vides attenuated unfocused radiation which has been passed
through a 100 �m beryllium and 25 �m aluminum filters to
remove the low energy components. Themaximum flux is near
4 keV. The photon flux absorbed by the sample was 1.58 � 106
photons/sec/�m2. Consequently, at our longest exposure time
of 16 s, the sample absorbed 2.5� 107 photons/�m2, whichwas
equivalent to an absorbed dose of about 2.43 � 104 Gray. The
end-station wasmodified to accommodate a Plexiglas chamber
with machined channels (3 mm � 60 mm � 1 mm) to contain
the PS II membrane samples. The samples were covered by 75
�m Kapton foil to retain the sample (�180 �l). The individual
channels were positioned in the beam by remote control and
exposed for various lengths of time (0, 4, 8, 16 s) at room tem-
perature. After exposure, the samples were immediately
removed from the chamber and held on ice until being stored at
�80 °C until further analysis.
The proteins in the samples were resolved on a 12.5–20%

acrylamide gradient by LiDS-PAGE using a non-oxidizing gel
system (29, 30). This was required, as standard PAGE is known
to introduce numerous protein oxidation artifacts (29, 31). In
the non-oxidizing system the gels are polymerized with ribofla-
vin (in the presence of diphenyliodonium chloride � toluene
sulfinate) followedby exposure toUV light. The upper reservoir
contained thioglycolate. Preliminary experiments indicated
that proteins resolved in this system exhibited much lower lev-

els of artifactual protein oxidation than proteins resolved under
standard LiDS-PAGE conditions (see Ref. 30, supplemental Fig.
S1). After electrophoresis, the gels were stained with Coomas-
sie Blue, destained, and protein bands containing CP47, CP43,
D1, andD2were excised. Thesewere then processed for trypsin
digestion using standard protocols. In some cases, the tryptic
peptides were processed using a C18 ZipTip� prior to mass
analysis.
Reversed-phase chromatography was performed as described

previously (30) using a Finnigan Surveyor MS pump and a Finni-
ganMicroAS autosampler. AWaters X-BridgeC18 3.5�m2.1�
100mmcolumnwas used for the reversed phase separation of the
tryptic peptides. It was operated at a flow rate of 200 �l/min. The
mobile phases consisted of a 95:5 water:acetonitrile with 0.1% for-
mic acid aqueous phase and a 95:5 acetonitrile:water with 0.1%
formic acid organic phase. The gradient was as follows: The
organic phase composition was 10% for the first 5min, ramped to
20% for the next 10 min, ramped to 50% for the next 25 min,
ramped to 80% in the next 35min, held at 80% for 10min followed
by a quick ramp to 10% in 5min, and a 10min hold to equilibrate
the column.
Mass spectrometry was performed on a Thermo Scientific

LTQ-FTTM, a hybrid instrument consisting of a linear ion trap
and an FT-ICR mass spectrometer. The experiments used the
standard electrospray source operating with a source voltage of
5 keV and a capillary temperature of 275 °C. Sheath and auxil-
iary gas flows were 18 and 5 respectively (both Thermo Scien-
tific instrument settings). A typical scan sequence involved a
positive ion FT-ICR scan at 100K resolution (100K atm/z 400).
During the FT-ICR acquisition, sixMS/MS scanswere acquired
by the linear ion trap determining the parent ions from the six
most abundant ions observed from a preview of the FT-ICR
scan. The CID scans were acquired with an isolation width of 2
and a normalized collision energy of 35 (bothThermoScientific
instrument settings). After acquiring the tandem mass spectra
twice, the ion was placed into an exclusion list for 30 s. Charge
state screening was enabled with monoisotopic precursor
selection.
In this study, two biological replicate experiments were per-

formed. Identification and analysis of peptides containing oxi-
dative modifications were performed using the MassMatrix
Programver. 1.3.1 (32, 33). Themodification fileswere adjusted
to include all of the possible oxidative modifications described
in references (17, 34). A FASTA library containing all of the
spinach PS II subunit protein sequences was searched. Addi-
tionally, a decoy library that contained these same proteins but
with reversed amino acid sequences was examined. No hits to
the decoy library were observed. For the determination of the
quality of the peptide calls within MassMatrix, max(pp1, pp2)
was � 8.5 and ppTag � 5.0 (32, 33). These parameters yield a p
value of � 0.00001; only oxidized peptides which exhibited this
extremely low p value were considered for the identification of
peptides containing oxidized residues. The quality of the mass
spectra observed at this high stringency is illustrated in Fig. 1 of
references (30) and (35). In this context it should be noted that
in MASCOT (software from Matrix Sciences) searches (36),
peptide identifications are typically performed with p values �
0.05. The direct consequence of our using such low p values is
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that in all cases high quality mass spectra were observed with
nearly complete y- and b-ion series for the oxidatively modified
peptides. Given the high quality of the data used in this study,
the union of the replicate data sets was examined. The identi-
fied oxidatively modified residues were mapped onto the Ther-
mosynechococcus vulcanus PS II structure (15) of the D1, D2,
CP43, and CP47 proteins using PYMOL (37).

RESULTS

As we have reported previously, even in the absence of syn-
chrotron radiation a number of amino acid residues are found
to be oxidatively modified in PS II (30, 35). In these earlier
studies, seventy-three oxidativelymodified amino acid residues
were identified in the D1, D2, CP43, and CP47 proteins of spin-
ach PS II at time 0, representing �4% of the residues found in
these four subunits. That residues are observed to be natively
oxidatively modified is not surprising, since the presence of
reactive oxygen species (ROS) in the cellular environment and
the production of ROS by PS II itself can lead to the oxidative
modification of amino acid residues within the photosystem
(38–40). Several of these residues are associated with CP43
(354E, 355T, 356M, and �357R) and are buried and in close vicin-
ity to the Mn4CaO5 cluster. We hypothesized that these resi-
dues are associated with an oxygen/ROS exit pathway from the
photosystem (30). Additionally, we have reported that subsets
of these residues that are associated with the stromal domains
of the D1 and D2 proteins are in close proximity to QA (D1
residues 237P, 238T, 239F, 241Q, 242E, and the D2 residues 237P,
238T, 241N, and 246M) and PheoD1 (D1 residues 130Q, 133L, and
135Y). The oxidative modification of these residues appears to
indicate that both QA

� and PheoD1� may generate ROS on the
reducing side of the photosystem (35).
The oxidative modifications which were observed at the var-

ious time points are summarized in supplemental Tables S1-S4,
along with the type of oxidativemodifications observed and the
residue location (surface, buried but in contact with cavity/
channel, or buried and not in contact with an apparent cavity/
channel) when mapped onto the T. vulcanus crystal structure.
As noted previously (30), at time 0, the overall sequence cover-
age observed in this study for the examined proteins was: D1,
24%, D2, 27%, CP47, 41%, and CP43, 26%; the coverage of the
residues located in the lumenally exposed extrinsic loops of
these proteins, the domains of principal interest in this study,
was significantly higher: D1, 35%, D2, 43%, CP47, 55% and
CP43, 43%. With increasing irradiation, the sequence coverage
improved, such that at 16 s irradiation the overall sequence
coverage was: D1, 30%, D2, 33%, CP47, 44%, and CP43, 40%
while the coverage of the residues located in the extrinsic loops
of these proteins was uniformly higher: D1, 45%, D2, 51%,
CP47, 60%, and CP43, 52%. This was expected since oxidative
modifications yield peptides which are more hydrophilic and,
consequently, more easily resolved by reversed phase chroma-
tography. It should also be noted that not all residues observed
to be modified at a particular time point are necessarily
observed at all subsequent time points. For instance, 16% of the
residues observed to be oxidatively modified in the proteins at
0 s irradiation are not observed at one ormore subsequent time
points using our stringent peptide selection criteria (i.e. p �

10�5). This is due primarily to the different populations of pep-
tides being present in the irradiated samples (see above) and
that only the most abundant peptides, at any particular elution
time in the reversed-phase chromatogram, are selected for frag-
mentation during mass spectrometry. If one lowers the selec-
tion criteria to levels typically used in MASCOT searches (i.e.
p � 0.05), significantly higher proportions of the peptides are
observed at other time points. Using this relaxed criteria, only
9% of the peptides initially identified at high stringency were
not observed using the lower stringency criteria. It should also
be noted that in no instances were hits to the decoy library
observed for any of the examined proteins. In this communica-
tion, if a residue was observed to be oxidatively modified at a
particular time point, it is assumed to also be modified at sub-
sequent time points with respect to mapping onto the T. vulca-
nus crystal structure.
In Figs. 1-4, the accumulation of oxidized residues is pre-

sented at the various times shown. Since the D1, D2, CP47, and
CP43 proteins are highly homologous between higher plants
and cyanobacteria (�85% similarity), it is possible to position-
ally map the modified residues present on these intrinsic pro-
teins from spinach directly to the corresponding residues in the
T. vulcanus crystal structure. Of the residues which we
observed to be oxidatively modified in spinach, 88% were con-
served or conservatively replaced in T. vulcanus.

Fig. 1 presents an overview of the time course for the oxida-
tivemodification of proteins in the core of PS II. As expected, at
all time points the vast majority (�75%) of the observed modi-
ficationswere located on the surface of the PS II complexwhich
is exposed to the bulk aqueous solvent. It should be noted that
oxidized residues identified at the N terminus of the D1 (2T, 3A
4I, 5L, 6E, 7R, 8R, 9E, and 10S), D2 (3I, 7K, and 10T) and CP43 (3T,

FIGURE 1. Overview of the time course of oxidatively modified residues
identified in the D1, D2, CP43, and CP47 proteins. Oxidized residues mod-
ified after 0, 4, 8, and 16 s of irradiation are shown as spheres mapped onto
Monomer I of the T. vulcanus structure. Since the PsbU and PsbV subunits are
not present in higher plant PS II, these chains are not shown. The view is from
outside Monomer I, looking toward the dimeric complex within the plane of
the membrane. The lumenal and stromal sides of the membrane are indi-
cated at the 0 s time point. Color key: CP47, pale blue; CP43, pale green; D1,
pale yellow; D2, pale red; PsbO, pale cyan; all other chains, gray. The modified
residues are shown as spheres in darker shades of these colors. The Mn4O5Ca
cluster is circled, and the manganese, oxygen, and calcium are shown as pur-
ple, red, and bright green spheres, respectively. Figs. 1– 4 were produced using
PYMOL (37).
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4L, 7L, and 9R), which were observed at various time points are
also probably surface-exposed; however, this could not be ver-
ified by direct comparison to theT. vulcanus structure, as these
residues are not resolved. Consequently, these residues are not
included in the calculation above and are not illustrated in Fig.
1. Increasing times of irradiation clearly leads to increased
numbers of oxidatively modified residues, most of which are
located on the surface of the complex. However, a number of
buried residues are alsomodified. Since these are not in contact
with bulk solvent water, the modifying OH� must be produced
from buried watermolecules located on the interior of the PS II
complex. The modified residues appear to form two large
groups. The first consists of D1, D2, and CP47 residues, while
the second consists of CP43 residues only. Both of these groups
of modified residues appear to lead from the Mn4O5Ca cluster
to modified residues on the surface of the PS II complex.
Fig. 2 illustrates the time course for radiolyticmodification of

themodified residues which are located within a 15 Å sphere of
the Mn4O5Ca metal cluster (please note that T. vulcanus num-
bering is used in Figs. 2–5). We had previously reported that at
time 0 the residues 354E, 355T, 356M, and 357R of CP43 and res-
idue 348R of the D2 protein are oxidatively modified. This latter
residue is exposed on the surface of the complex (30). With
increasing irradiation times, additional residues within this
sphere become modified. After 4 s irradiation, the D2 residues
320L and 325I as well as CP43:396M of are modified. All of these
residues are near the 15 Å boundary and are distant from the
M4O5Ca cluster. After 8 s irradiation a number of additional
residues are observed to be modified; on D1 332H, 333E, 329E,
330V, 334R, and 328M, D2:328W, CP47:384R, and CP43:395Y and

403S. After 16 s irradiation no modification of additional D2
residues was observed, however, D1:331M and the CP43 resi-
dues 345P, 359W, and 400P are oxidatively modified. In Figs. 2–4
someof the residues are not labeled because they are eclipsed by
modified residues in the foreground of the figures.
The observed oxidative modifications of the D1 and D2 res-

idues are particularly interesting. For D1, 333E is a bidentate
ligand toMn3 andMn4 of themetal cluster and 332H is an inner
sphere ligand toMn1.These residues are also in close proximity
to Cl�1. 329E, 334R, 328M, 331M, and 330V form a distal layer of
D1 residues adjacent to 333E and 332H while the D2 residues
320L, 321L, 325I, 348R, and 328W form an additional layer of resi-
dues adjacent to the distal D1 residues and more distant from
the metal cluster. These latter two residues are surface-ex-
posed. It should also be noted that D2:348R and the adjacent
residue, CP47:384R, are also surface-exposed residues.

Fig. 3 illustrates the oxidative modification of residues more
distant from theMn4O5Ca cluster. At 4 s the D2 residues 329M,
323E, 337E, 338N, and 339F, are modified. At 8 s the D2 residues
307E, 310E, 311F, 335P, 340V, 326R, 327A, 328W, and 336H, the D1
residues 307E, 310E, and 311F, and the CP47 residues 384R, 423K,
and 426F are oxidatively modified. At 16 s D2:334Q and the D1
residues 320I and 316T aremodified. At each of these time points
additional surface-exposed residues are modified on the D1,
D2, and CP47 proteins. The D1, D2, and CP47 residues illus-
trated in Figs. 2 and 3 formnear continuous paths of oxidatively
modified residues leading from the surface of the complex to
the Mn4O5Ca cluster.
Fig. 4 illustrates oxidative modifications of CP43 which are

more distant from the Mn4O5Ca cluster. At 4 s the surface
residues 214L, 365W, 393A, 394E, and 396M are oxidatively modi-

FIGURE 2. Time course of oxidatively modified residues in the vicinity of
the Mn4O5Ca cluster active site of PS II. A 15 Å sphere centered on Mn3 of
the Mn4O5Ca cluster is illustrated. The orientation is identical to that shown in
Fig. 1. Oxidized residues modified after 0, 4, 8, and 16 s of irradiation are
shown as spheres. Color key: CP47, pale blue; CP43, pale green; D1, pale yellow;
D2, pale red; PsbO, pale cyan. The modified residues are shown in darker
shades of these colors. T. vulcanus numbering is used. The oxidized residues
are labeled at the time of their earliest appearance and are not labeled at
subsequent time points. Some residues modified at these various time points
are not visible, as they are eclipsed by modified foreground residues. Some
unmodified foreground residues, principally of the D1 and D2 chains, have
been removed for clarity. The Mn4O5Ca cluster is shown with the manganese,
oxygen, and calcium illustrated as purple, red, and bright green spheres,
respectively. To orient the reader, the Ca of the Mn4O5Ca cluster is labeled at
the 0 s time point.

FIGURE 3. Time course of oxidatively modified residues distant from the
Mn4O5Ca cluster on the D1, D2 and CP47 proteins. View is from the Extrin-
sic Loop E of CP43 looking down onto the Mn4O5Ca cluster and residues of the
D1, D2, and CP 47 subunits, which are on the lumenal side of the membrane.
Oxidized residues modified after 0, 4, 8, and 16 s of irradiation are shown as
spheres. Color key: CP47, pale blue; D1, pale yellow; and D2, pale red. Only these
subunits are illustrated. The modified residues are shown in darker shades of
these colors. T. vulcanus numbering is used. The oxidized residues are labeled
at the time of their earliest appearance and are not labeled at subsequent
time points. Some residues modified at these various time points are not
visible, as they are eclipsed by other modified foreground residues. The
Mn4O5Ca cluster is shown with the manganese, oxygen, and calcium illus-
trated as purple, red, and bright green spheres, respectively.
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fied. At 8 s 395Y and 403S are modified. Finally, at 16 s 343R, 345P,
346T, 348E, 359W, 361F, 362R, 363G 366L, 397T, 398H, and 400P
exhibit oxidative modifications. At each of these time points
additional surface-exposedCP43 residues also exhibit oxidative
modifications (a few examples being 367E, 368P, 369L, 375L, 376D,
383D, etc.). Interestingly, in largemeasure, no prior studies have
implicated CP43 being involved in the transit of water from the
bulk solvent to the Mn4O5Ca cluster, at least in the domains in
which we have observed oxidatively modified residues.

DISCUSSION

In this communication we have used the synchrotron radiol-
ysis of water in an attempt to experimentally identify putative
water pathways within PS II. Several points must be kept in
mind. First, a limitation of our study is that we do not have full
mass coverage of all of the domains of the examined proteins
exposed to the lumenal side of the membrane. This is, in large
measure, a consequence of poor chromatographic resolution of
highly hydrophobic peptides. Consequently, our catalogue of
oxidatively modified residues is almost undoubtedly incom-
plete. Additionally, we have examined only the core subunits of
PS II -D1, D2, CP43, and CP47. It is probable that residues of
other proteins within the complex may participate in the for-
mation of water channels (22, 24, 26, 41). It should also be
cautioned that the lack of observed modification of an amino
acid residue in noway suggests that the residue is not in contact
withwater. Finally, photoreduction of themanganese cluster by
X-rays could lead to conformational rearrangements within the
metal cluster and/or ligating amino acid environment, leading
to greater exposure of residues to water and possibly their oxi-
dative modification.
With these caveats in mind, we observe two major groups of

oxidized amino acid residues. The first group contains modi-

fied amino acid residues identified onD1,D2, andCP47 (Fig. 3).
This group extends fromD1 residues directly associated as first
sphere ligands of the Mn4O5Ca cluster (332H and 333E) and
other nearby residues on D1 (329E, 334R, 328M, 331M, and 330V)
and D2 (320L and 348R). At this point the path bifurcates with
one path leading from D2:320L (D2:323E, 326R, and CP47:364S,
365S, 363F, 366F, 359M 425I, and 426F) to CP47:423K, which is
exposed at the surface of the complex. Many of the residues in
this path are buried and in in contact with cavities and/or chan-
nels evident in the T. vulcanus crystal structure (see below). A
second apparent path leads from D2:348R to the surface resi-
dues D2: 344E and 346L and CP47:384R.

The second group of observed oxidized residues consists
only of CP43 residues (Fig. 4) and leads from the inner sphere
ligand 354E and second sphere ligand 357R to the buried residues
355T and 356M and the surface-exposed 359W. At this point the
group bifurcates and one branch of residues (345P, 346T, 343R,
and 348E) is in direct contact with the PsbO subunit. While this
branch does not appear to reach the lumenal surface, it is pos-
sible that PsbO residues complete a putative pathway to the
lumen. The second branch of this CP43 pathway includes the
buried residues 361F, 366L, and 363G. These residues are in con-
tact with numerous surface-exposed CP43 residues including
362R, 367E, 370R, 369L, 375L, 368P, 365W, etc. Interestingly, no
residues in these regions of CP43 have been implicated in any of
the proposed models for channels within the photosystem.
Many of these residues, however, are in contact with non-con-
tiguous cavities which are present in CP43 and at the CP43:
PsbO interface. It is possible that these residues constitute an
additional novel water pathway within the PS II complex.
Another possibility exists, however. As noted previously (30),
the CP43 residues 354E, 357R, 355T, and 356Mmay be associated
with a putative dioxygen/ROS exit pathway. Intriguingly, many
of the oxidatively modified CP43 residues identified in this
communication extenddirectly from these four residues, which
are in close proximity to the Mn4O5Ca cluster, to the lumenal
surface of PS II. It is possible that these modified residues form
distal portions of a putative dioxygen/ROS egress pathway that
is occupied by transient water molecules which could undergo
radiolysis. In a variety of other systems the occupation of oxy-
gen channels with water molecules has been documented (42–
44). Additionally, any dioxygen remaining in a putative oxygen
egress pathway would also be subject to modification during
radiolysis, yielding reactive oxygen species (principally HO2

�

and O2
. ) capable of oxidatively modifying amino acid residues

(45). These species can produce oxidative modification of
amino acid residues which are indistinguishable from those
produced by OH�. We hypothesize that the observed CP43
pathwaymay constitute an oxygen egress pathway leading from
the Mn4O5Ca cluster to the lumenal surface of the PS II com-
plex. As noted above, no continuous channel connects these
CP43 residues forming such a putative dioxygen exit pathway.
It is possible that conformational changes occurring during
S-state cycling could lead to structural alterations completing a
continuous pathway from the Mn4O5Ca cluster to the surface
of the complex (see below).
Our findings are schematically summarized in Fig. 5. Fig. 5A

illustrates the oxidized residues found in the D1, D2, and CP47

FIGURE 4. Time course of oxidatively modified residues distant from the
Mn4O5Ca Cluster on CP43. View is from the Extrinsic Loop E of CP47 looking
down onto the Mn4O5Ca cluster and CP43 residues on the lumenal side of the
membrane. Oxidized residues modified after 0, 4, 8, and 16 s of irradiation are
shown as spheres. CP43 is shown in pale green. The modified residues are
shown as spheres in darker green. The oxidized residues are labeled at the
time of their earliest appearance and are not labeled at subsequent time
points. Some residues modified at these various time points are not visible, as
they are eclipsed by modified foreground residues. The Mn4O5Ca cluster is
shown with the manganese, oxygen, and calcium illustrated as purple, red,
and bright green spheres, respectively. To orient the reader, the Ca of the
Mn4O5Ca cluster is labeled at the 0 s time point.
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proteins while Fig. 5B shows the modified residues found in
CP43. In this figure, the buried residues are highlighted in red
while the surface-exposed residues are shown in blue.
Earlier computational studies have identified several putative

water/oxygen/proton channels in PS II (22, 24, 41). These stud-
ies have been recently reviewed (46). Briefly, 3–5 channels were
identified computationally as leading from the lumenal surface
of PS II to theMn4O5Ca cluster. Using the nomenclature of Ho
(46), these have been termed: 1) the Back Channel, which has
been hypothesized to transport either oxygen (22) or water (24,
41), 2) the Narrow Channel, which has been hypothesized to
transport protons (24, 41), 3) the Broad Channel, which was
hypothesized to transport water and/or protons (22, 24, 41),
and 4) the Large Channel, which was hypothesized to transport
either water and/or protons (22) or oxygen (24, 41). These stud-
ies, in large measure, have utilized computational methodologies
(CAVER Analysis and surface contact area analysis). Gabdulkha-
kov et al. (24) additionally performed Xe gas co-crystallization
x-ray crystallography. Recently, molecular dynamic simulations
coupled with water streamline tracing have been used to map the
path of water movement to the oxygen-evolving site (25, 26).
These authors identified five putative water channels which, in
large measure, are similar to the channels identified in previous
studies (see Table 1, Ref. 26). These studies have provided
extremely important information concerning the presence of
putative channels within the PS II complex and provide a frame-
work for formulating testable hypotheses bearing on the move-
ment of water, oxygen, and protons within the photosystem.
It must be noted, however, that several limitations exist with

all of these largely computational studies. These were discussed
in detail in our earlier communication (30) with respect to the
identification of putative dioxygen/ROS egress pathways. Anal-
ogous concerns exist with respect to the identification of puta-
tive water pathways. Briefly, since most of the computational
studies examine static crystal structures (22, 24, 41), they fail to
take into account molecular motion on the nsec time scales
which could substantially alter the overall shape and dimen-
sions of the identified water channels within PS II. Vassiliev et
al. (25, 26) have at least partially addressed this problem using

molecular dynamic simulations of water movement within the
photosystem. It has also been implicitly assumed that no con-
formational changes occur in the PS II structure during normal
S-state cycling which affect either water transport to the active
site (i.e. that the overall protein structure observed in the S1
state is the same as for all of the other S-states) or oxygen away
from the active site. S-state transitions, particularly the S3 3
[S4]3 S0 state transition associated with O2 formation, release
and water binding could affect the location, shape, and dimen-
sions of possible water entrance pathways. A number of studies
have indicated that largely undefined conformational changes
do occur during S-state cycling (47–50) although the specific
residues involved and the effects on putative water channels
within the photosystem remain undetermined. It has been
noted that even amodest conformational change involving one
or a few amino acid residues could hypothetically either open or
close a putative water transport (or oxygen transport) channel
during S-state cycling (26).
With these caveats in mind, comparison of our results with

these computational studies yields some interesting insights.
First, as expected, there is no direct one-to-one correspondence
between the oxidized residues which we observe and those
hypothesized to be in contact with computationally identified
putative channels. This is due principally to the lack of com-
plete mass coverage of the examined proteins. Additionally,
since we have collected data only on the D1, D2, CP43, and
CP47 core subunits of the photosystem, residues on other PS II
subunits which contribute to channel formation remain
unidentified (22, 24–26, 41). Second, in the protein domains for
which we do have mass coverage, comparison to the channels
summarized by Ho (Table 1, Ref. 46) yields the following
results: in the Back Channel, 22% of the residues were observed
to be oxidized, in the NarrowChannel, 33%weremodified, and
in the Large Channel 35% contained oxidative modifications.
Larger numbers of oxidized residues were observed in the
Broad Channel, with 55% containing oxidative modifications.
Similar results were obtained comparing our data to the chan-
nels identified by Vassiliev et al. (26). These investigators iden-
tified four channels possibly involved in water transit to the
Mn4O5Ca cluster. A fifth channel, corresponding to the Back
Channel of Ho and Styring (41) exhibited a very high energy
barrier (22 kcal/mol) for water transport. Of the four putative
water channels (designatedChannels 1–4 in Ref. 26) which had
lower energy barriers (10–15 kcal/mol), residues in contact
withChannels 2 and 4 exhibited low amounts of oxidativemod-
ification (0 and 22%, respectively). The residues in Channels 1
and 3whichwere explicitly identified by the authors exhibited a
high degree (67%) of oxidativemodification. Consequently, res-
idues located in Channels 1/3, which in large measure corre-
sponds to the Broad Channel of Ho and Styring (41), exhibit a
high propensity for oxidative modification in our experiments.

CONCLUSIONS

In this study, we have presented experimental evidence
which has identified residues within PS II which are susceptible
tomodification byOH� produced by synchrotron radiation.We
believe that our findings implicate theBroadChannel ofHo and
Styring (41) (Channels 1/3 of Vassiliev et al. (26)) as a water

FIGURE 5. Schematic representation of the groups of modified residues
observed in PS II. A, the D1-D2-CP47 group identified as a putative water
channel. Each protein is represented as an ellipse. The cyan shading indicates
the residues associated with the Broad Channel previously identified (26, 41).
B, the CP43 group hypothesized to be a dioxygen egress pathway or a second
water channel. The Mn4O5Ca cluster is shown with the manganese, oxygen,
and calcium illustrated as purple, red, and bright green spheres, respectively.
Buried oxidized residues are shown in red while surface-exposed oxidized
residues are shown in blue.
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channel functioning to deliver substrate water to theMn4O5Ca
cluster. A second group consisting entirely of modified CP43
residues was also identified. These residues may be associated
with a hypothetical channel which has not been previously been
identified. While this putative channel may be a second water
channel, we hypothesize that it may constitute a dioxygen/ROS
exit pathway leading from the Mn4O5Ca cluster to the thyla-
koid lumen. Experiments are currently ongoing to differentiate
between these and other possibilities.
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